Manual administration of a virtualized storage pool is impossible. The pace of change and the complexity of the information returned from any metrication is too complex for a human to understand and respond in anything close to an acceptable timeframe.
Storage analytics sort through the metrics from the storage pool and distil useful information from a tremendous amount of near-real-time data. The aim of the analytics is to present information about a resolvable issue in a form that is easy to understand, uncluttered by extraneous data on non-important events.
Let’s take detecting a failed drive as an example. In the early days of storage, understanding a drive failure involved a whole series of CLI steps to get to the drive and read status data in chunks. This was often complicated by the drive being in a RAID array drive-set. This approach worked for the 24 drives on your server, but what happens when we have 256 drives and 10 RAID boxes, or 100 RAID boxes…get the problem?